

Supporting Information

© 2016 The Authors. Published by Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

Topological Control of Columnar Stacking Made of Liquid-Crystalline Thiophene-Fused Metallonaphthalocyanines

Hiroyuki Suzuki,^[a] Koki Kawano,^[b] Kazuchika Ohta,^[a] Yo Shimizu,^[b] Nagao Kobayashi,^[a] and Mutsumi Kimura*^[a]

open_201500205_sm_miscellaneous_information.pdf

Fig. S1 1 H NMR spectra of a) $ZnTNc_{endo}$ and b) $ZnTNc_{exo}$ in CDCl3.

Fig. S2 MALDI-TOF Ms spectra of a) $ZnTNc_{endo}$ and b) $ZnTNc_{exo}$.

Fig. S3 a) Molecular orbitals and energy diagrams of **6** and **7** (methyl-substituted analogues) obtained by DFT at the B3LYP/6-31G(d) level, respectively. b) Simulated absorption spectra and oscillator strength of **6** (black) and **7** (red) obtained by TD-DFT at the CAM-B3LYP/6-31G(d) level.

Fig. S4 a) Molecular orbitals and energy diagrams of $ZnTNc_{endo}$ and $ZnTNc_{exo}$ (methyl-substituted analogues) obtained by DFT at the B3LYP/6-31G(d) level, respectively. b) Simulated absorption spectra and oscillator strength of $ZnTNc_{endo}$ (black) and $ZnTNc_{exo}$ (red) obtained by TD-DFT at the CAM-B3LYP/6-31G(d) level.

Fig. S5 Surface pressure vs. area per molecule isotherms for $ZnTNc_{endo}$ (black line) and $ZnTNc_{exo}$ (red line) on triply distilled water at 25 °C.

Fig. S6 X-ray diffraction patterns of $ZnTNc_{endo}$ at 160 $^{\circ}C.$

Fig. S7 Photocurrent decay properties for a) positive (bias voltage = -80 V) and b) negative (bias voltage = 80 V) charge carriers of $\mathbf{ZnTNc_{exo}}$ at 150 °C.